UPSEI 2016

Papa 2CodeBASdutians

Phyics

Arsl: (D) $2 R$
Byenegy conservaionbetween pointsA adB
$M g(2 R)+\frac{1}{2} m(0)^{2}=m g H+\frac{1}{2} m(0)^{2} \Rightarrow H=2 R$

Ans2 (D) 40sec

$4 t+2 t=4(60) \Rightarrow t=40$

AnE3 (A) Tonerobtheleft

Paint of cortac of whed hesveloitytonarobleft.
Ars4 (C) bandmelane

$$
F=-\frac{d U}{d x}=-2 b x \Rightarrow \omega=\sqrt{\frac{2 b}{m}}
$$

Ans5i (D) ligtisabsabedinquatacfengy $E=h v$
AnsG (B) $954 \mathrm{~kg}^{\mathbf{n}}{ }^{3}$
$V \rho g=\frac{V}{6}(724) g+\frac{5 V}{6}(1000) g \Rightarrow \rho=954 \mathrm{Kg} / \mathrm{m}^{3}$

Апк7: (C) 14am

$n(18)=l$ wherelenghof stringisl
$(n+1)(16)=l$
Gives $n=8$ andl $=14 \mathrm{Hom}$
Ans8(A) $4.8 \times 10^{-4} \mathrm{C}$
$Q=\frac{\phi}{R}=\frac{\left(20 \times 10^{-4}\right)(2.4)}{10}=4.8 \times 10^{-4} \mathrm{C}$
Ans9 (B) $\frac{3 q}{2 \sqrt{2} \pi \varepsilon_{0} a}$
$V=\frac{k q}{a \sin 45^{0}}+\frac{k(-q)}{a \sin 45^{0}}+\frac{k(3 q)}{a \cos 45^{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 q}{\frac{a}{\sqrt{2}}}=\frac{3 q}{2 \sqrt{2} \pi \varepsilon_{0} a}$
Ans10(D) ∞
Reistance $=\frac{d V}{d I}=\frac{1}{\left(\frac{d I}{d V}\right)}=\frac{1}{\text { Slope }}=\frac{1}{0}=\infty$
Ansil: (C) Itmowesbadk andforth (cosillaing) towarchthendf Sandwaveislongtudral wave.
Ans12(B)Silver
Ansi3 (D) $4 /$
$A_{1} V_{1}=A_{2} V_{2} \Rightarrow \pi(2 R)^{2} V=\pi R^{2} V_{B} \Rightarrow 4 V=V_{B}$

Ars14: (B)6mintes

$$
\begin{aligned}
& -\frac{d \theta}{d t}=k\left[\theta_{a v}-\theta_{0}\right] \\
& -\frac{(59-61)}{4}=k\left[\frac{61+59}{2}-30\right] \\
& \frac{1}{2}=k 30 \Rightarrow k=\frac{1}{60} \\
& -\frac{(49-51)}{t}=k\left[\frac{51+49}{2}-30\right] \\
& \frac{2}{t}=k(20) \Rightarrow t=6 \\
& \text { Anslin(C) } \mathbf{1 8 0 0}
\end{aligned}
$$

$i=\frac{7.5}{9} \therefore Q=i t=\frac{7.5}{9}(6)(60)(60)=18000 C$
Ans16 (B) $\frac{B \omega l^{2}}{2}$
AnsIf: (A) $3 \Phi_{E}$

$$
\Phi_{E}=\frac{q}{\varepsilon_{0}} \quad \therefore \Phi=\frac{q+(-3 q)+5 q}{\varepsilon_{0}}=\frac{3 q}{\varepsilon_{0}}=3 \Phi_{E}
$$

Ans18(B)ZA

$\mathrm{IV} \mathrm{F}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
$I(120)=1800+1300+100 . \therefore I=2667 \mathrm{~A}$

Ans19 (A)2A

$$
\left.B=\frac{\mu_{0}}{2 \pi(0.1)}[10+8+I-20]=0 \quad \therefore \right\rvert\,=2
$$

Ans20(C)80V

$$
|\varepsilon|=L\left|\frac{d i}{d t}\right|=\left(40 \times 10^{-6}\right)\left(\frac{6-0}{3 \times 10^{-6}}\right)=80 \mathrm{~V}
$$

Ans2l: (D) 12.1 eV
$\Delta E=E_{3}-E_{1}=-1.5-(-13.6)=12.1 \mathrm{eV}$

Ans22 (D) Threisnodange

$\vec{F}=q \vec{v} \times \vec{B}=0$ Soveloityisconstat
Ans23 (B) -10^{-5}

Ans24 (A) 1

$K . E=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\sqrt{\frac{G M}{r}}\right)^{2}=\frac{1}{2} m \frac{G M}{r} \quad$,
$U=-m \frac{G M}{r} \therefore E=K . E+U=m \frac{G M}{2 r}-m \frac{G M}{r}=-m \frac{G M}{2 r}$

Altanetive

weknowthat $E=-K \Rightarrow|E|=K$

Ans2ㅍ(B) $16 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~m} / \mathrm{s}$
$a_{c}=32 \cos 60^{\circ}=16 \mathrm{~m} / \mathrm{s}^{2}$
$a_{c}=\frac{v^{2}}{R} \Rightarrow 16=\frac{v^{2}}{1} \Rightarrow v=4 \mathrm{~m} / \mathrm{s}$
Ans2a(D) $10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ بpwarctitheindine
$a=\frac{75-5 g \sin 30^{\circ}}{5}=(75-25) / 5=10 \mathrm{~m} / \mathrm{s}^{2}$

Ars2:(A)69

$W=K E_{f}-K E_{i}=\frac{1}{2}(3)(64+16)-\frac{1}{2}(3)(36+4)=\frac{1}{2}(3)(80-40)=60 J$

Ans28 (C) 38

$W=Q_{A}-Q_{R}$
$25=360-\mathrm{Q}_{\mathrm{R}}: \mathrm{Q}_{\mathrm{R}}=33 \mathrm{~J}$
Ans 29 (A) $\frac{3 \sigma}{2 \varepsilon_{0}}$
$E=\frac{\sigma}{2 \varepsilon_{0}}+\frac{-2 \sigma}{2 \varepsilon_{0}}+\frac{4 \sigma}{2 \varepsilon_{0}}=\frac{3 \sigma}{2 \varepsilon_{0}}$

Ars. 30 (C) Threinpardld

$U=\frac{1}{2} C V^{2} \quad$ FơU maximm Cmatbenaximm
Ans3l:(D) $\frac{20}{3} \Omega$
ByWhetstanebridge $\mathrm{R}_{e q}=\frac{(4+6)(8+12)}{(4+6)+(8+12)}=\frac{20}{3} \Omega$
An632 (C) $a<b, b>c$
Ans33 (B) $2 f$
$\frac{1}{f}=(\mu-1)\left(\frac{1}{R}-\frac{1}{-R}\right)$
$\frac{1}{f_{1}}=(\mu-1)\left(\frac{1}{R}-\frac{1}{\infty}\right) \Rightarrow f_{1}=2 f$

Ans34 (B) 26V

$V=(2+4) 4+2=26$ volt
AnEFi (C) $2 \sqrt{2}$
$\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m K E}}=\frac{h}{\sqrt{2 m q V}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\sqrt{m_{2} q_{2}}}{\sqrt{m_{1} q_{1}}}=\frac{\sqrt{4 m_{p} 2 e}}{\sqrt{m_{p} e}}=2 \sqrt{2}$
Ans36(A) $\frac{6 g}{5 L} \sin \theta$
$I=4 m\left(\frac{L}{2}\right)^{2}+m\left(\frac{L}{2}\right)^{2}=\frac{5}{4} m L^{2}$
$\tau=4 m g \frac{L}{2} \sin \theta-m g \frac{L}{2} \sin \theta=m g \frac{3 L}{2} \sin \theta$
$\tau=I \alpha \Rightarrow \alpha=\frac{\tau}{I}=\frac{6 g}{5 L} \sin \theta$
Ans37: (C) $4 \hat{i}-5 \hat{j}$
Haizantd componet remains constat, wheremveticd companeat dangesitssign Ans38 (C) 5%
$T=2 \pi \sqrt{\frac{l}{g}} \Rightarrow \frac{\Delta T}{T}=\frac{\Delta l}{2 l}+\frac{\Delta g}{2 g} \Rightarrow \frac{\Delta T}{T} \%=\left(\frac{3}{2}+\frac{7}{2}\right) \%=5 \%$

Ars39 (D) 100N

Workper cyde $=\frac{1}{2} \times(30-10)(8-2)=60 \mathrm{~J} \therefore P=\frac{60 \times 100}{60}=100 \mathrm{~W}$

Ans40 (A)Pdth-I

AnsAl: (A) $\mathbf{H} \mathbf{t}$

$v_{1}=30300 / 100=303 \mathrm{~Hz} \quad, v_{2}=30300 / 101=300 \mathrm{~Hz} \Rightarrow v_{1}-v_{2}=3 \mathrm{~Hz}$
Ansin (C) $0.75 I_{0}$
$I=I_{0} \cos ^{2} 30^{\circ}=0.75 I_{0}$
Ans43 (B) laær ligtishiglychereat
Ans4:(B) 19\%
$K E_{2}=\frac{p_{2}^{2}}{2 m}=\frac{(0.9 p)^{2}}{2 m}=\frac{0.81 p^{2}}{2 m}$
Ans/5i (A) Magificaion of miocosqpeisinasdyprqpationd totheleatdistanceof distintvision Magifiction $M=1+\frac{D}{f}$
Ars4a (C) $64 \pi S R^{2}$
$W=S\left[8 \pi S(3 R)^{2}-8 \pi S(R)^{2}\right]=64 \pi S(R)^{2}$
Ars4f: (C)Lesthen301knhr
$\langle v\rangle=\frac{d+d}{t_{1}+t_{2}}=\frac{200+200}{\frac{200}{400}+\frac{200}{200}}=\frac{800}{3}=267 \mathrm{~km} / \mathrm{hr}$
Ars4i (C) renainscontart
$d S=\frac{d Q}{T}=0 \quad \therefore$ Secontat
Ansig(C) $A=0, B=1, C=1$
Otpat $C=A+A B$
Ans50 (C)drondicabardion

Chanistry

Ans5l: (C) Het

IarizaionPdetial $=\mathrm{E}_{\infty}-\mathrm{E}_{1}$
$544=0-\mathrm{E}_{1} \propto \mathrm{E}_{1}=-544 \mathrm{e} \mathrm{V}$
But $E_{1}=-136 \times \frac{Z^{2}}{(1)^{2}}$ eV \quad or $-54.4 \mathrm{CV}=-136 \times Z^{2} \quad \sigma \quad Z=2$,SoHe ${ }^{+}$ion
Ans52(C) $n=3, l=2, m=1, s=+\frac{1}{2}$
Eregy $\alpha(n+l)$
ForOdiors (A) $(n+l)=3+0=3$
(B) $(n+l)=3+1=4$
(C) $(n+l)=3+2=5$
(D) $(n+l)=4+0=4$

So $n=3, l=2, m=1, s=+\frac{1}{2}$ Sedof qartumnumbr hestigneteregy.

AnE5 (C) $\boldsymbol{q}^{\mathbf{3}}$

$$
\begin{aligned}
& \mathrm{OF}_{2}:- \\
& { }_{5} \Rightarrow \mathrm{~s}^{2} 2^{2} 5^{2} a^{4}
\end{aligned}
$$

ar

σ

sp3, Twolonepars of detron V-shape
AnE54. (D) $\mathrm{SO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}$and BO_{3}^{3-}
$\mathrm{NO}_{3}^{-} \Rightarrow \mathrm{Sp}^{2} \Rightarrow$ Trignal plarer
$\mathrm{AsO}_{3}^{3-} \Rightarrow \mathrm{Sp} \mathrm{p}^{3} \Rightarrow$ Pyramida (andonepár)
$\mathrm{CO}_{3}^{-2} \Rightarrow s p^{2} \Rightarrow$ Trigord parar
$\mathrm{ClO}_{3}^{-} \Rightarrow s p^{2} \Rightarrow$ Pyraciod (melonepar)
$s O_{3}^{-2} \Rightarrow s p^{3} \Rightarrow$ Pyraniod (onelonepair)
$\mathrm{BO}_{3}^{3-} \Rightarrow s p^{3} \Rightarrow$ Pyraciod (melonepar)
So $\mathrm{SO}_{3}^{2-}, \mathrm{ClO}_{3}^{-} \& \mathrm{BOO}_{3}^{3-}$ dl arenon-darar

$\pi p-\pi p$ back bonding

Sizeof C isnarethenthesizeof F soinceeof BF_{3} strong 2 (B)-2d(F) π-bondng ocars solevisadidtyof BF_{3} islesstran BC_{3}.

Ans5a (A) 2methy-6odher3enemide

Ans5: (B) 2Bronol-daro5fluoro3iodbbatane

* Numbbering according to lowest set of locant rule

2-Bromo-1-chloro-5-flaoro-5-Flauoro-3-iodo-banzene

ArE58 (D)(1), (iii), (v)

(I)

(II)

(III)

(IV)

(V)

(VI)

Sotlestare2-dadh pesetinl, III \&V

Ars59 (C) intamedite2

Accardingto HammansPostudesthetraritionstaresendetothat speeieswhichisenagically nearto it
Ans60 (B) $\mathbf{C}>\boldsymbol{F}>$ Br >1
Onrovingyptodowninthegrap Eecroneffinitydereesedetodereeseinsizebtdlainehes highdedron ffinity fluorined eto presenceof vacatdarditds

Ans6l: (B) Coardinetionisanerism

Arbver is (B) becaseof cordntioniscreismis aformof stucturd isomeisminutichthecompositionof thecomdexionvaies Inaccordindioniscmerthetdd raio of ligandtoned renins thesare, buthe ligandattachedtospeeific metd iandange

Anser (A) 780

Speeies whichisercess in reationmixturefdlowzeroardr kindics, socrdar of readionwith respeet to O_{2} is Z 70
AnsGi (D) Redution
Friedd-Craftreationisaaondiceledrodilicsubstittion Soredncionisnd afriedorat reation Ans64 (A) E
${ }_{\mathrm{H}^{-}}^{\mathrm{Cl}} \mathrm{C}^{\mathrm{C}=\mathrm{C}_{\mathrm{C}_{2} \mathrm{H}_{5}}^{C \mathrm{CH}_{3}} \text { Higherpiaitygap(*) aedfferetsice,Soprefixis(E) }}$

AnsGI (A) 4σ and4 π bands

$$
O \frac{\underline{\pi}}{\bar{\sigma}} \mathrm{C} \frac{\bar{\pi}}{\bar{\sigma}} \mathrm{C} \frac{\underline{\pi}}{\bar{\sigma}} \mathrm{C} \frac{\underline{\pi}}{\sigma} \mathrm{O} \quad 4 \sigma \& 4 \pi
$$

Ans6a (B) lin\#r, pyranidal

$X f_{2}=s p^{3} d h y$ aridzdion 3.p \& 21.p
$\mathrm{NH}_{3}=$ Sp ${ }^{3}$ hybrid

$$
\text { 11.p }+3 \mathrm{zap}
$$

So

Ans6: (C) 21and1
$B r F_{4}^{-} \Rightarrow s p^{3} d^{2} \Rightarrow 21 . \mathrm{p}+4 \mathrm{lap}$
$X e F_{6} \Rightarrow s p^{3} d^{3} \Rightarrow 11 . \mathrm{p}+6 \mathrm{bp}$
$S b\left(l_{6}^{3-} \Rightarrow s p^{3} d^{3} \Rightarrow 11 . \mathrm{p}+6 \mathrm{hp}\right.$

Ans@ (A) isdrqpic

Crystllinesdid5aearisdropic ndiscrqic

Ans69 (A) vapar preareofsduteista

Nonvdatilesduteisdwayshavezerovapar pressure

Ans70 (B) awoidteladlods

MicellesaeassoitedodlacsutichaeformedaboetheOMC(citicd micelles concertraion)
Ans7t (A) Milkftiscispasedinueter
Emelsionsarecdldicsinwhichbothdspersed prese\&dspersianmedumareliquid Somilkisemisionin whichliqidisdspersedinwter.
Ars72 (D) - MiDK $\mathbf{~ m d}^{\mathbf{- 1}}$
$2 \mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}, \Delta \mathrm{H}_{f}=52$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}_{f}=-394$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}_{f}=286$
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}_{C}=$?

But equ $2 \times($ equ2 $)-2 \times(e q+3)-(e q+1)=e q+4$
$2(-394)+2(-286)-(52)=-1412 \mathrm{KJmod}^{-1}$

Ans73 (C)

If thedfferempebweenergy of reactat\&trasitionstaiszerothenativaionengy iszero.
Ans74 (C) $t_{1 / 2} \propto a^{0}$

$$
t_{1 / 2} \alpha \frac{1}{n-1}
$$

Forfirstardar reationn=1
So $t_{1 / 2} \alpha \frac{1}{a^{0}}$
Or $t_{1 / 2} \alpha a^{0}$ constat

Ars 5 (D) 20ML ${ }^{-1}$

Adivenmsisconcetraioninmdelitre ${ }^{1}$ arconcertrdioninnolaity
SoMdaity $=\frac{8.5}{17} \times \frac{1000}{250}=2.0 \mathrm{ML}^{-1}$
Ans7a (C) $K_{1}^{2}=K_{2}$
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}), K_{1}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}$
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}), \mathrm{K}_{2}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
$K_{1}^{2}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=K_{2}$
So $K_{1}^{2}=K_{2}$

Ans77: (B) threostareisaras

Whensaregrapsarepreser inqpositesidecdledthreostereisarer.

Ars/8 (C) Sdhdtly

DuringtheSchdtky dfeetssarenunber of caions\&aiars aemissingfrantheirlaticestesodansityis deremed
Ans79 (A) $\frac{1}{8}$

$$
N=N_{0} / 2^{n} \therefore N=N_{0} / 2^{3}=N_{0} / 8
$$

Ans80 (B) 2

Ars81: (C) 3^{3} adand

Ans82 (B) CaOC_{2}

Bleadingpondar isCaOd 2
Ans83 (B) squerepyranida
$C l F_{4}^{+} \Rightarrow$ Sp ${ }^{3}$ d/hybidzaion
4bp of e\& Ilanepar of e\&shapeissquapyranida

Ans84 (D) $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \square \quad \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
If geseas mole of readat isequl tothegeseas ndes of prodit thenreatianis not rfeeted by the danginginpressure
So (A) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta n=3-2=9$
(B) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}), \Delta n=2-1=1$
(C) $\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2}(\mathrm{~g}), \Delta n=2-1=1$
(D) $3 \mathrm{Fe}_{(s)}+4 \mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4(s)}+4 \mathrm{H}_{2(g)} \Delta n=4-4=0$

Ans85 (A) Incresingthetenparchure

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+92.3 \mathrm{KJ}
$$

Readianiseathemicsoaninceesingthetemperdureeqilibiumstiftedinbadkarddreatian
Ans86 (B) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{\stackrel{\mathrm{CH}}{\mathrm{C}} \mathrm{C}}{\mathrm{CH}}-\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$
Compand

givesgeomericd isamism\&itisalsogiveeratiareism
Ans85: (B)

(a)

(b)

(d) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$

Ansea (D) \square λ
$\mathrm{C}_{4} \mathrm{H}_{6}$ Degeeof unsturdion $(\mathrm{DOU})=\frac{10-6}{2}=2$
(a)

DOU $=2$

DOU $=2$
(c)

$\mathrm{DOU}=2$

DOU $=2$
(b)
 DOU=2
(d)

DOU=2

DOU=2

DOU=2

So \quad

Ars90(B)

Ans9l: (D)
Rescranceincaboxylateion- COO^{-}

Ans92 (B) $\mathbf{k g ~ m s}{ }^{2}$

$$
E=m c^{2} \Rightarrow k g\left(m s^{-1}\right)^{2}=K g m^{2} s^{-2}
$$

Sokgnm² isndtheunit of enegy.
Anses (A) 1341gmmd ${ }^{-1}$
$P_{\text {total }}=99.652 \mathrm{KPa}$
$P_{\text {water }}=85.140 \mathrm{KPa}$
$P_{\text {liquid }}=(99.652-85.140) K P a=14.512 \mathrm{kPa}$
And $\quad \frac{m_{A}}{m_{B}}=\frac{1.27 \mathrm{~g}}{1 g}$
Wehave $\quad \frac{m_{A}}{m_{B}}=\frac{P_{A} M_{A}}{P_{B} M_{B}}$
α

$$
M_{A}=\left(\frac{m_{A}}{m_{B}}\right)\left(\frac{P_{B} M_{B}}{P_{A}}\right) \quad \therefore M_{A}=(1.27)\left(\frac{85.140 \mathrm{KPa}^{\times 18 \mathrm{~g} \mathrm{~mol}^{-1}}}{14.512 \mathrm{kPa}^{2}}\right) \cong 1341 \mathrm{gmd}^{-1}
$$

Ans94 (A) Cell will sudl

Osndic pressure

Ans97 (C) 692

Solutionis verydlutesocancentrdionof H^{+}iansinHCl sdution
$=\mathrm{H}^{+}$iansinneter $+\mathrm{H}^{+}$isioninHC
$=1 \times 10^{-7}+2 \times 10^{8}=12 \times 10^{8}$
So $\quad \mathrm{HH}=-\log \left(12 \times 10^{-8}\right)=-\log \left(2^{2} \times 3 \times 10^{-8}\right)$
$=-2 \log 2-\log 3+8 \log 10=-2(0.301)-0.477+8=6.92$

Ans9a (C) $\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{C}$

A
B C
Atcome AtCertreof Eachface Atcomer

$6 \times \frac{1}{8}$	$6 \times \frac{1}{2}$	$2 \times \frac{1}{8}$
$\frac{3}{4}$	3	$\frac{1}{4}$
3	12	1

Sondealarformia $=A_{3} B_{12} C$,
Ans97: (C) $X_{2} Y_{4} Z$

Z	Y	X

Comer \quad in $\frac{1}{2} \operatorname{Tdin} \frac{1}{2}$ Oh
Vads vads
$8 \times \frac{1}{8} \quad 8 \times \frac{1}{2} \times 1 \quad 4 \times \frac{1}{2} \times 1$
$1 \quad 4$
Soformlais $X_{2} Y_{4} Z$
Ans98 (D) B>A>C
Accordingtoquestiontheposition of devertsindeetronemicd ssiesis
C
A
B
Oxidzingponer of devertsincees indedrocherical seriesonnvinguptodownsodereesingadar of oxidżngpoweris $B>A>C$

Ans99 (D) $1>2>3>4>5$

Sodereesingarder of stalility $1>2>3>4>5$
Ans 100 (A)

BidogyArsnerKey

Ans10: (C)Fandinplatallsaly
 Ars102 (D) Mranicaid
Itisadramateisicfetureof prokaydiccel nell.
Ans10: (B) Zygtene DringZygtenepheehordogasdronesones cones doæetoech dhe andstat paringthtiscalledsympais

Ans10: (B) Tno

Thetwodrondicsof adplicteddronesoneaehddtogethe tithecertrome

Ansifis (A) PyranidofEnerg

Pyraniosof enegyareduaysurigt, ळenegyislostaechtropticlerd.

Ans106 (C)Oidessof Ntrocen

Phoconemicd srog is formedtroughthereation of sda raddion with arbomepolluats ilikeritrogenoxids andvdaileagariccompands

Ans10: (D)X

 dsesafenandveyrae

Ans108 (C)Divison

"Phyun" apdies formally to any bidogicd domin, hat it is dways ueedfor acinals, wheres
"Divisorn' isaten usedforpats
Ans19: (C) Opaingof Foneribud

Artherisrefestothetineof floweing whenflower budqperswithpatsavilad efor polinetion

Ansl10 (B) Dupe

Cocontsisadypefnitwithahadstonycueringerdosingthesed

Ansill: (D) Veralar canbium

Secondry gowth is de to the two types of lated meitens i.e vesala cantium\& cak cantrium

AnsID2 (B) Agnnbidicritrocenfixingleateria

Bdharefreelivingæoddicbateiathosecanfixatroscheicritrogen

Ans113 (C) Tindnokenium

Red nate-doom of Tridhodesnium is de to their pinay ligt havesing pigneat, phycoaythin

Ansll4: (B) Agrias

Agriasisaneddematroom

Anslits (B)GermaCup

Gemmanp aesmall receqdadesloctedonthethall and cortan speeidizedstuctures called grmæenticharegeenmiti-cdluarbus

Ans 176 (A) Prothallus

 poodred on the sporqchte This spore geminites and davigps into a booly celled theprothalus

Ansl7: (B) Cycos
 Ans179 (D) Fover

If thepedndeteminntesintofloner thenitiscalled ynmoseinflorecance

Ans119 (D) Leithin

Leithincariesbothaiars\&cdionsadformsaleithinioncomplex

ArsDD (B) Ntrogendficiertsol

Insectivarosplats gow inNitrogendeficiet sail. Thes fufill their nitrogen requrenert by traping\&dgestinginseds

AnsD7: (B) PEP

In C4 pats Phosdmendpyructe (a 3 cabon compound) pids up CO_{2} and danges into Ordoacedte (4 cabon compound) in the presmee of veter. This reation is caddysed by the erryme phosdmond prudecaboxlæe

AnsII2 (C) PDO

InPSI theligtreationcetreisP700. Pignetsdsarblanger($(5800 \mathrm{~m}$) waveleghtsof ligt

AnsIB (C) Oidłtivederaboylation

Pyruicaid $+\mathrm{CO}-\mathrm{A}+\mathrm{NAD}^{+} \rightarrow \mathrm{Acey} \mathrm{CO}-\mathrm{A}+\mathrm{NADH}+\mathrm{H}^{+}+\mathrm{CO}_{2}$
This reationiscalledtheoxidtivedecaboxydion of pruvicaidtoacell COA.
Thisreationisthelirkbewwengycdysisadtheiticaidgyde

AnsD4 (A) Guttrion

Intheprocess of giltion positivexylempressure(deto rod pressre) cabes liquidtoende fromthepores Hyothods

AnsD5 (B) Coæe

Itisanesticmovenetindvinginmadand ypnerdbendngof apatpat

AnsD6 (A) $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}$

Mille in his dasicd eparimert used thee gers to prodre anino aid nimiding the erlifenirometandtestedthechericd ciginof life

AnsD7. (D) Evdutionthraghirhsitance

Evduion thrugh irheitace wes not induded in Dawin's theary heorly eydaned abat Survivd of fitlest, Striggeforeistence\& Naturd scection

AnsD8 (A) Pqulation

Popltionistheurit of eduluion Thegratypeof theindvided isfixedtbirthand ppaldion isthesnallet unitwhreeddutionay dangeisposside

AnsI2 (A) Peipatus

Peiptushesboth andidan(segnetted body,nephida)andathopodan (atemæemanddes dansec)dratates andherceisthecarnetinglirk beweenthetwo.
Ansi3n (D) $a \rightarrow 4, b \rightarrow 2, c \rightarrow 1, d \rightarrow 3$
Ans131 (B) 0
O witcosentcatainatigenA, BadRh
Ans132 (C) Jharkand
Jhathand(Lader Distrid) hesPdma(Betla) Naiord pak withaTigr reervehaingbison ,axisaxis, eqdatardlecparston.
Ans133 (C) Edinoclamta

Edincdarnta show edutioray nermess to henichorotes with eterocodom type of dadqumet

Ans134 (A) AmpribiaandMamtria

AmptibiaandManmaliahaedcornylicskll thet is atachedtothebooy withtwoatialatoy condles

Ans155 (B) Bas

Bds etibit ehdocdion sytemuherin Utracric sand is prodreed to perceive djeds conninginitsway.
Ans136 (C) Gigrticduetospeedyganth
Ggartic detospeedy growthæhommeserenedbyitspitutaygandeffetsgowth
Arb13. (D) Vazaveroum
Veavescrumsupdies doodtothendl Isof blood vessds

Ans138 (A) Ribscfaxisvatdrar

Oobrtad process of Xxis of manmasistheribof axis vetedræ

Ars139 (C) Blooldfmen

Gantoctes of malaid paraites aeformedintheRBCs of nanwhichthengestranferedto theveda.

Ans10 (C) Digntic

Digentic tryparsonaisadgentic praritehaingtwohots: Man\&TseTsefly.
Ars111 (B) Oilum \rightarrow spongrood \rightarrow Osalum
Ans12 (D) Wucheriabancofti
Wingiabanoffi cabesfilaizis
Ans13 (B) Spidr-Aradrida
Spidashavingeigtlees badngto Aradridadas of Arthopoca, Pilabennosto Gazropoca, Codroachbalanstoinsed, LeechtoHirudneia
Ans14 (D) Tanaria-Edinodamta

Ans15 (B) Dadqpeduings

Peipandaatricarahesdadqpedwing

Ans146 (A) Pyilla

Ans17. (D) Coalonicfluid
Codoricfluidwill coreat
Ans18 (D) Land foms
Lavd forms of botharesinila
Ars19 (A) Sandfly, Tsetefly, Harefly, Culex
Sandfly, Tsesefly, Howefly, Clexaedl vedarwhichtrasnitdses
Ans150 (B) Oil ofChenqpodum
Cil of CheropodumisuedtoareAscaizis

