UPSEE 2016 Paper 2 Code BA Solutions Physics

Ans.1: (D) 2*R*

By energy conservation between points A and B

$$Mg(2R) + \frac{1}{2}m(0)^2 = mgH + \frac{1}{2}m(0)^2 \Longrightarrow H = 2R$$

Ans.2: (D) 40 sec

 $4t + 2t = 4(60) \Longrightarrow t = 40$

Ans.3: (A) Towards the left

Point of contact of wheel has velocity towards left. **Ans.4: (C)** *b* and *m* alone

$$F = -\frac{dU}{dx} = -2bx \Longrightarrow \omega = \sqrt{\frac{2b}{m}}$$

Ans.5: (D) light is absorbed in quanta of energy E = hvAns.6: (B) 954 kg/m³

$$V\rho g = \frac{V}{6} (724) g + \frac{5V}{6} (1000) g \implies \rho = 954 \, Kg \, / \, m^3$$

Ans.7: (C) 144 cm

n(18) = l where length of string is *l*

$$(n+1)(16) = l$$

Gives n=8 and *I*=144cm

Ans.8:(A) $4.8 \times 10^{-4} C$

$$Q = \frac{\phi}{R} = \frac{(20 \times 10^{-4})(2.4)}{10} = 4.8 \times 10^{-4} C$$
Ans.9: (B) $\frac{3q}{2\sqrt{2}\pi\varepsilon_0 a}$

$$V = \frac{kq}{a\sin 45^0} + \frac{k(-q)}{a\sin 45^0} + \frac{k(3q)}{a\cos 45^0} = \frac{1}{4\pi\varepsilon_0} \frac{3q}{\frac{a}{\sqrt{2}}} = \frac{3q}{2\sqrt{2}\pi\varepsilon_0 a}$$
Are 10 (D)

Ans.10:(D) ∞

Resistance =
$$\frac{dV}{dI} = \frac{1}{\left(\frac{dI}{dV}\right)} = \frac{1}{Slope} = \frac{1}{0} = \infty$$

Ans.11: (C) It moves back and forth (oscillating) towards the wolf Sound wave is longitudinal wave . Ans.12:(B)Silver Ans.13: (D) 4V

 $A_1V_1 = A_2V_2 \Longrightarrow \pi (2R)^2 V = \pi R^2 V_B \Longrightarrow 4V = V_B$ Ans.14: (B)6 minutes

$$-\frac{d\theta}{dt} = k \left[\theta_{av} - \theta_{0} \right]$$

$$-\frac{(59-61)}{4} = k \left[\frac{61+59}{2} - 30 \right]$$

$$\frac{1}{2} = k30 \Rightarrow k = \frac{1}{60}$$

$$-\frac{(49-51)}{t} = k \left[\frac{51+49}{2} - 30 \right]$$

$$\frac{2}{t} = k(20) \Rightarrow t = 6$$
Ans.15: (C) 18000C
$$i = \frac{7.5}{9} \therefore Q = it = \frac{7.5}{9} (6)(60)(60) = 18000C$$
Ans.16: (B) $\frac{B\omega l^{2}}{2}$
Ans.17: (A) $3\Phi_{E}$

$$\Phi_{E} = \frac{q}{\varepsilon_{0}} \qquad \therefore \Phi = \frac{q + (-3q) + 5q}{\varepsilon_{0}} = \frac{3q}{\varepsilon_{0}} = 3\Phi_{E}$$
Ans.18: (B) 27A
$$IV = P_{1} + P_{2} + P_{3}$$

$$I(120) = 1800 + 1300 + 100 \qquad \therefore I = 26.67A$$
Ans.19: (A) 2A
$$B = \frac{\mu_{0}}{2\pi (0.1)} [10 + 8 + I - 20] = 0 \qquad \therefore I = 2$$
Ans.20: (C) 80V
$$|\varepsilon| = L \left| \frac{di}{dt} \right| = (40 \times 10^{-6}) \left(\frac{6-0}{3 \times 10^{-6}} \right) = 80V$$
Ans.21: (D) 12.1eV
$$\Delta E = E_{3} - E_{1} = -1.5 - (-13.6) = 12.1eV$$
Ans.22: (D) There is no change
$$\vec{F} = q\vec{v} \times \vec{B} = 0 \quad \text{So velocity is constant}$$
Ans.23: (B) -10^{-5}
Ans.24: (A) 1
$$K \cdot E = \frac{1}{2}mv^{2} = \frac{1}{2}m \left(\sqrt{\frac{GM}{r}} \right)^{2} = \frac{1}{2}m \frac{GM}{r} = -m \frac{GM}{2r}$$
Alternative:

we know that $E = -K \Longrightarrow |E| = K$

Ans.25:(B) $16m/s^2$, 4m/s $a = 32\cos 60^{\circ} = 16 \, m \, / \, s^{2}$ $a_c = \frac{v^2}{P} \Longrightarrow 16 = \frac{v^2}{1} \implies v = 4m / s$ Ans.26:(D) $10\frac{m}{s^2}$ upwards the incline $a = \frac{75 - 5g\sin 30^{\circ}}{5} = (75 - 25) / 5 = 10m / s^{2}$ Ans.27:(A) 60 $W = KE_{f} - KE_{i} = \frac{1}{2}(3)(64+16) - \frac{1}{2}(3)(36+4) = \frac{1}{2}(3)(80-40) = 60J$ Ans.28: (C) 335J $W = Q_{\Delta} - Q_{R}$ $25=360-Q_{R}$: $Q_{R}=335J$ Ans.29: (A) $\frac{3\sigma}{2\varepsilon}$ $E = \frac{\sigma}{2\varepsilon_0} + \frac{-2\sigma}{2\varepsilon_0} + \frac{4\sigma}{2\varepsilon_0} = \frac{3\sigma}{2\varepsilon_0}$ Ans .30: (C) Three in parallel $U = \frac{1}{2}CV^2$ For U maximum, C must be maximum **Ans.31:(D)** $\frac{20}{3}\Omega$ By Wheatstone bridge $R_{eq} = \frac{(4+6)(8+12)}{(4+6)+(8+12)} = \frac{20}{3}\Omega$ **Ans.32: (C)** a < b, b > c**Ans.33: (B)** 2f $\frac{1}{f} = \left(\mu - 1\right) \left(\frac{1}{R} - \frac{1}{-R}\right)$ $\frac{1}{f_1} = \left(\mu - 1\right) \left(\frac{1}{R} - \frac{1}{\infty}\right) \Longrightarrow f_1 = 2f$ Ans.34: (B) 26V V = (2+4)4 + 2 = 26 volt **Ans.35: (C)** $2\sqrt{2}$ $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mKE}} = \frac{h}{\sqrt{2maV}}$ $\frac{\lambda_1}{\lambda_2} = \frac{\sqrt{m_2 q_2}}{\sqrt{m_2 q_2}} = \frac{\sqrt{4m_p 2e}}{\sqrt{m_p e}} = 2\sqrt{2}$ Ans.36:(A) $\frac{6g}{5I}\sin\theta$

$$I = 4m\left(\frac{L}{2}\right)^2 + m\left(\frac{L}{2}\right)^2 = \frac{5}{4}mL^2$$

$$\tau = 4mg\frac{L}{2}\sin\theta - mg\frac{L}{2}\sin\theta = mg\frac{3L}{2}\sin\theta$$

$$\tau = I\alpha \implies \alpha = \frac{\tau}{I} = \frac{6g}{5L}\sin\theta$$

Ans.37: (C) $4\hat{i} - 5\hat{j}$

Horizontal component remains constant, whereas vertical component changes its sign. Ans.38: (C) 5 %

$$T = 2\pi \sqrt{\frac{l}{g}} \implies \frac{\Delta T}{T} = \frac{\Delta l}{2l} + \frac{\Delta g}{2g} \implies \frac{\Delta T}{T} \% = \left(\frac{3}{2} + \frac{7}{2}\right)\% = 5\%$$

Ans.39: (D) 100W

Work per cycle = $\frac{1}{2} \times (30 - 10)(8 - 2) = 60J$ $\therefore P = \frac{60 \times 100}{60} = 100W$ Ans.40: (A)Path –I Ans.41: (A) 3Hz $v_1 = 30300/100 = 303Hz$, $v_2 = 30300/101 = 300Hz \Rightarrow v_1 - v_2 = 3Hz$

Ans.42: (C) $0.75I_0$ $I = I_0 \cos^2 30^0 = 0.75I_0$ Ans.43: (B) laser light is highly coherent Ans.44:(B) 19%

$$KE_2 = \frac{p_2^2}{2m} = \frac{(0.9\,p)^2}{2m} = \frac{0.81p^2}{2m}$$

Ans.45: (A) Magnification of microscope is inversely proportional to the least distance of distinct vision.

Magnification
$$M = 1 + \frac{D}{f}$$

Ans.46: (C) $64\pi SR^2$
 $W = S\left[8\pi S(3R)^2 - 8\pi S(R)^2\right] = 64\pi S(R)^2$
Ans.47: (C)Less than 300 km/hr
 $< v >= \frac{d+d}{t_1+t_2} = \frac{200+200}{\frac{200}{400} + \frac{200}{200}} = \frac{800}{3} = 267 km / hn$
Ans.48: (C) remains constant
 $dS = \frac{dQ}{T} = 0$ \therefore S=constant
Ans.49:(C) $A = 0, B = 1, C = 1$
Output $C = A + AB$
Ans.50: (C) chromatic aberration

Chemistry

Ans.51: (C) He⁺ Ionization Potential = $E_{\infty} - E_1$ $54.4 = 0 - E_1$ or $E_1 = -54.4 \text{ eV}$ $E_1 = -13.6 \times \frac{Z^2}{(1)^2} eV$ or $-54.4eV = -13.6 \times Z^2$ or Z=2 , So He⁺ ion But **Ans.52:(C)** $n = 3, l = 2, m = 1, s = +\frac{1}{2}$ Energy α (n+l)(A) (n+l) = 3+0 = 3For Options: (B) (n+l) = 3+1 = 4(C) (n+l) = 3+2=5(D) (n+l) = 4+0 = 4So n = 3, l = 2, m = 1, $s = +\frac{1}{2}$ Set of quantum number has highest energy. Ans.53: (C) sp³ OF₂:- $_{6}O \Rightarrow 1s^{2}2s^{2}2p^{4}$ or || sp³ hybridisation sp³-hybride orbitals 1s11 or | 1 | | 1 | :F::F: sp³, Two lone pairs of electron V-shape Ans.54:. (D) SO_3^{2-}, ClO_3^{-} and BO_3^{3-} $NO_3^- \Rightarrow Sp^2 \Rightarrow$ Trigonal planar $AsO_3^{3-} \Rightarrow sp^3 \Rightarrow$ Pyramidal (onelone pair) $CO_3^{-2} \Rightarrow sp^2 \Rightarrow$ Trigonal planar $ClO_3^- \Rightarrow sp^2 \Rightarrow$ Pyramidal (one lone pair) $SO_3^{-2} \Rightarrow sp^3 \Rightarrow$ Pyramidal (one lone pair) $BO_3^{3-} \Rightarrow sp^3 \Rightarrow$ Pyramidal (one lone pair) So SO_3^{2-} , ClO_3^{-} & BO_3^{3-} all are non-planar Ans.55: (B) stronger 2p(B)–2p(F) π – bonding πp - πp back bonding

Size of CI is more than the size of F so in case of BF₃ strong 2p(B)–2p(F) π -bonding occurs so lewis acidity of BF₃ is less than BCl₃.

Ans.56: (A) 2-methyl-6-oxohex-3-enamide

Ans.58: (D)(i), (iii), (v)

So at least one 2⁰- alcohol present in I, III & V

Ans.59: (C) intermediate 2

According to Hammonds Postulates the transition state resemble to that species which is energetically near to it.

Ans.60: (B) Cl > F > Br > l

On moving up to down in the group. Electron affinity decrease due to decrease in size but chlorine has high electron affinity fluorine due to presence of vacant d-orbitals.

Ans.61: (B) Coordination isomerism

Answer is (B) because of coordination isomerism is a form of structural isomerism in which the composition of the complex ion varies. In a coordination isomer the total ratio of ligand to metal remains the same, but the ligands attached to specific metal ion change.

Ans.62: (A) zero

Species which is excess in reaction mixture follow zero order kinetics, so order of reaction with respect to O₂ is zero

Ans.63: (D) Reduction

Friedel-Craft reaction is a aromatic electrophilic substitution. So reduction is not a fried-craft reaction. Ans.64: (A) E

C=C, CH_3 Higher priority group (*) are different side , So prefix is (E)

Ans.65: (A) 4σ and 4π bonds

$$O = \frac{\pi}{\sigma} C = \frac{\pi}{\sigma} C = \frac{\pi}{\sigma} C = \frac{\pi}{\sigma} O + \frac{\pi}{\sigma} A \sigma \& 4\pi$$

Ans.66: (B) linear, pyramidal

 $XeF_2 = sp^3d$ hybridization, 3l.p. & 2 l.p.

 $(\overline{})$ $NH_3 = sp^3 hybrid$ 11.p. + 3b.p.

$$H_{H}^{\vee}H$$

Ans.67: (C) 2,1 and 1

So

 $BrF_4^- \Rightarrow sp^3d^2 \Rightarrow 2$ l.p.+ 4b.p.

 $XeF_6 \Rightarrow sp^3d^3 \Rightarrow 1 \text{ l.p.} + 6 \text{ b.p.}$

 $SbCl_6^{3-} \Rightarrow sp^3d^3 \Rightarrow 1$ l.p. + 6 b.p

Ans.68: (A) isotropic

Crystalline solids are anisotropic not isotropic

Ans.69: (A) vapour pressure of solute is zero

Non volatile solute is always have zero vapour pressure

Ans.70: (B) associated colloids

Micelles are associated colloids which are formed above the CMC (critical micelles concentration)

Ans.71: (A) Milk fat is dispersed in water

Emulsions are colloids in which both dispersed phase & dispersion medium are liquids. So milk is emulsion in which liquid is dispersed in water.

Ans.72: (D) -1412 kJ mol⁻¹

$2C + 2H_2 \rightarrow C_2H_5, \Delta H_f = 52$	(1)
$C + O_2 \rightarrow CO_2, \Delta H_f = -394$	(2)
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O, \Delta H_f = 286$	(3)
$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O, \Delta H_C = ?$	(4)
equ. 2× (equ-2) – 2 × (equ-3) – (equ-1) =	= equ-4
$(1)^{-1}_{-1}(206)^{-1}_{-1}(52) = 1/12 \ \text{Mmol}^{-1}_{-1}$	

2 (-394) + 2(-286) - (52) = - 1412 KJmol

Ans.73: (C)
$$\mathop{\mathbb{E}}\limits_{\mathrm{E}}$$

But

If the difference between energy of reactant & transition state is zero then activation energy is zero.

Ans.74: (C)
$$t_{1/2} \propto a^0$$

 $t_{1/2} \propto \frac{1}{n-1}$
For first order reaction n = 1

F

 $t_{1/2} \alpha \frac{1}{a^0}$ So

Or $t_{1/2} \propto a^0$ constant Ans.75: (D) 2.0 ML⁻¹

Active mass is concentration in mole litre⁻¹ or concentration in molarity

So Molarity =
$$\frac{8.5}{17} \times \frac{1000}{250} = 2.0ML^{-1}$$

Ans.76: (C) $K_1^2 = K_2$
 $SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g), K_1 = \frac{[SO_3]}{[SO_2][O_2]^{1/2}}$
 $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g), K_2 = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$

$$K_1^2 = \frac{[SO_3]^2}{[SO_2]^2[O_2]} = K_2$$

So $K_1^2 = K_2$

Ans.77: (B) threo stereoisomers

When same groups are present in opposite side called threo stereoisomer .

Ans.78: (C) Schottky

During the Schottky defects same number of cations & anions are missing from their lattice site so density is decreased.

Ans.79: (A) $\frac{1}{8}$

$$N = N_0 / 2^n \therefore N = N_0 / 2^3 = N_0 / 8$$

Ans.80: (B) 2

$$= \frac{1}{8} \times 8 + 1 \times 1 = 2$$

Ans.81: (C) 3º alcohol

Ans.82: (B) CaOCI₂

Bleaching powder is CaOCI₂

Ans.83: (B) square pyramidal

 $ClF_4^+ \Rightarrow sp^3 d$ /hybridization

4 b.p. of e⁻& 1 lone pair of e⁻& shape is square pyramidal

Ans.84: (D) $3Fe(s) + 4H_2O(g) \square Fe_3O_4(s) + 4H_2(g)$

If gaseous moles of reactant is equal to the gaseous moles of product then reaction is not affected by the changing in pressure

So (A) $2SO_3(g) \longrightarrow 2SO_2(g) + O_2(g), \ \Delta n = 3 - 2 = 9$ (B) $H_2(g) + I_2(s) \longrightarrow 2HI(g), \ \Delta n = 2 - 1 = 1$ (C) $C_{(s)} + H_2O_{(g)} \longrightarrow CO_{(g)} + H_2(g), \ \Delta n = 2 - 1 = 1$ (D) $3Fe_{(s)} + 4H_2O_{(g)} \longrightarrow Fe_3O_{4(s)} + 4H_{2(g)} \ \Delta n = 4 - 4 = 0$

Ans.85: (A) Increasing the temperature

 $N_2(g) + 3H_2(g) = 2NH_{3(g)} + 92.3KJ$

Reaction is exothermic so on increasing the temperature equilibrium shifted in backward direction

Ans.86: (B) CH_3CH_2 –CH–CH–CH–CH– CH_3 Compound

Ans.92: (B) kg. ms⁻²

 $E = mc^2 \Longrightarrow kg(ms^{-1})^2 = Kgm^2s^{-2}$ So kg.ms⁻² is not the unit of energy . Ans.93: (A) 134.1 gm mol⁻¹

 $P_{total} = 99.652 KPa$ $P_{water} = 85.140 KPa$ $P_{liquid} = (99.652 - 85.140) KPa = 14.512 kPa$

 $\frac{m_A}{m_B} = \frac{1.27\,g}{1g}$ And

or

We have
$$\frac{m_A}{m_B} = \frac{P_A M_A}{P_B M_B}$$

or
$$M_A = \left(\frac{m_A}{m_B}\right) \left(\frac{P_B M_B}{P_A}\right) \quad \therefore M_A = (1.27) \left(\frac{85.140 \text{ KPa} \times 18 \text{ g mol}^{-1}}{14.512 \text{ kPa}}\right) \cong 134.1 \text{ g mol}^{-1}$$

Ans.94: (A) Cell will swell

Osmotic pressure

Ans.95: (C) 6.92

Solution is very dilute so concentration of H⁺ ions in HCI solution $= H^+$ ions in water $+ H^+$ is ion in HCI $= 1 \times 10^{-7} + 2 \times 10^{-8} = 12 \times 10^{-8}$ $pH = -\log(12 \times 10^{-8}) = -\log(2^2 \times 3 \times 10^{-8})$ So $= -2\log 2 - \log 3 + 8\log 10 = -2(0.301) - 0.477 + 8 = 6.92$ Ans.96: (C) $A_3B_{12}C$ R С А At Centre of Each face At corner At corner $6 \times \frac{1}{8}$ $6 \times \frac{1}{2}$ $2 \times \frac{1}{8}$ $\frac{3}{4}$ 1 3 4 3 12 1 So molecular formula = $A_3B_{12}C_1$ Ans.97: (C) X_2Y_4Z Υ Х Ζ in $\frac{1}{2}$ Td in $\frac{1}{2}$ Oh Corner Voids voids $8 \times \frac{1}{2} \times 1$ $4 \times \frac{1}{2} \times 1$ $8 \times \frac{1}{8}$ 2 1 So formula is X_2Y_4Z Ans.98: (D) B > A > C

According to question the position of elements in electrochemical series is

С А В

Oxidizing power of elements increases in electrochemical series on moving up to down so decreasing order of oxidizing power is B > A > C

Ans.99: (D) 1 > 2 > 3 > 4 > 5

Biology Answer Key Ans.101: (C) Found in plant cells only

Tonoplast is a cytoplasmic membrane surrounding a large central vacuole in plant cells.

Ans.102: (D) Muramic acid

It is a characteristic feature of prokaryotic cell wall.

Ans.103: (B) Zygotene During Zygotene phase homologous chromosomes comes close to each other and start pairing that is called synapsis.

Ans.104: (B) Two

The two chromatids of a duplicated chromosome are held together at the centromere.

Ans.105: (A) Pyramid of Energy

Pyramids of energy are always upright, as energy is lost at each trophic level.

Ans.106: (C) Oxides of Nitrogen

Photochemical smog is formed through the reaction of solar radiation with airborne pollutants like nitrogen oxides and volatile organic compounds.

Ans.107: (D) X

There are many X-linked diseases, such as hemophilia, colorblindness etc. but known Y-linked diseases are few and very rare.

Ans.108: (C) Division

"Phylum" applies formally to any biological domain, but it is always used for animals, whereas "Division" is often used for plants.

Ans.109: (C) Opening of Flower bud

Anthesis refers to the time of flowering, when flower bud opens with parts available for pollination.

Ans.110: (B) Drupe

Coconuts is a drupe fruit with a hard stony covering enclosing the seed.

Ans.111: (D) Vascular cambium

Secondary growth is due to the two types of lateral meristems i.e. vascular cambium & cork cambium.

Ans.112: (B) Asymbiotic nitrogen-fixing bacteria

Both are free living aerobic bacteria those can fix atmospheric nitrogen.

Ans.113: (C) Trichodesmium

Red water-bloom of *Trichodesmium* is due to their primary light harvesting pigment, phycoerythrin.

Ans.114: (B) Agaricus

Agaricus is an edible mushroom.

Ans.115: (B) Gemma Cup

Gemma cups are small receptacles located on the thalli and contain specialized structures called gemmae which are green multi-cellular buds.

Ans.116: (A) Prothallus

The gametophyte is the haploid stage of the pteridophyte life-cycle. It develops from the spore produced on the sporophyte. This spore germinates and develops into a body called the prothallus.

Ans.117: (B) Cycas

Ans.118: (D) Flower

If the peduncle terminates into flower then it is called cymose inflorescence.

Ans.119: (D) Lecithin

Lecithin carries both anions & cations and forms a lecithin-ion complex.

Ans.120: (B) Nitrogen deficient soil

Insectivorous plants grow in Nitrogen deficient soil. They fulfill their nitrogen requirement by trapping & digesting insects.

Ans.121: (B) PEP

In C4 plants Phosphoenolpyruvate (a 3 carbon compound) picks up CO_2 and changes into Oxaloacetate (4 carbon compound) in the presence of water. This reaction is catalysed by the enzyme, phosphoenol pyruvate carboxylase.

Ans.122: (C) P700

In PS-I the light reaction centre is P700. Pigments absorb longer (>680nm) wavelengths of light.

Ans.123: (C) Oxidative decarboxylation

Pyruvic acid + Co-A + NAD⁺ ---> Acetyl Co-A + NADH + H⁺ + CO₂

This reaction is called the oxidative decarboxylation of pyruvic acid to acetyl Co-A.

This reaction is the link between glycolysis and the citric acid cycle.

Ans.124: (A) Guttation

In the process of guttation positive xylem pressure (due to root pressure) causes liquid to exude from the pores, Hydathodes.

Ans.125: (B) Close

It is a nastic movement involving inward and upward bending of a plant part.

Ans.126. (A) CH₄ ,NH₃ ,H₂O, H₂

Miller in his classical experiment used these gases to produce amino acid mimicking the earlier environment and tested the chemical origin of life.

Ans.127. (D) Evolution through inheritance

Evolution through inheritance was not included in Darwin's theory he only explained about Survival of fittest, Struggle for existence & Natural selection.

Ans.128. (A) Population

Population is the unit of evolution. The genotype of the individual is fixed at birth and population is the smallest unit where evolutionary change is possible.

Ans.129. (A) Peripatus

Peripatus has both annelidian(segmented body,nephridia)and arthopodian (antennae,mandibles, claws etc.)characters and hence is the connecting link between the two.

Ans.130. (D) $a \rightarrow 4$, $b \rightarrow 2$, $c \rightarrow 1$, $d \rightarrow 3$

Ans.131. (B) O⁻

O- as it does not contain antigen A, B and Rh

Ans.132. (C) Jharkhand

Jharkhand (Latehar District) has Pelmau(Betla) National park with a Tiger reserve having bison ,axis axis ,elephant and leopards too.

Ans.133. (C) Echinodermata

Echinodermata show evolutionary nearness to hemichordates with enterocoelom type of development.

Ans.134. (A) Amphibia and Mammalia

Amphibia and Mammalia have dicondylic skull that is attached to the body with two articulatory condyles

Ans.135. (B) Bats

Bats exhibit echolocation system wherein ultrasonic sound is produced to perceive objects coming in its way.

Ans.136. (C) Gigantic due to speedy growth

Gigantic due to speedy growth as hormone secreted by its pituitary gland affects growth

Ans.137. (D) Vasa vasorum

Vasa vasorum supplies blood to the walls of blood vessels.

Ans.138. (A) Ribs of axis vertebrae

Odontoid process of axis of mammals is the rib of axis vertebrae

Ans.139. (C) Blood of man

Gametocytes of malarial parasites are formed in the RBC's of man which then gets transferred to the vector.

Ans.140. (C) Digenetic

Digenetic trypansoma is a digenetic parasite having two hosts : Man & Tse-Tse fly.

Ans.141. (B) Ostium \rightarrow spongocoel \rightarrow Osculum

Ans.142. (D) Wucheria bancrofti

Wucheria bancrofti causes filariasis.

Ans.143. (B) Spider - Arachnida

Spiders having eight legs belong to Arachnida class of Arthopoda , Pila belongs to Gastropoda, Cockroach belongs to insect, Leech to Hirudineria.

Ans.144. (D) Tornaria – Echinodermata

Tornaria – Echinodermata is incorrect as it is a hemichordate larva rest all options are correct.

Ans.145. (B) Developed wings

Periplaneta americana has developed wing.

Ans.146. (A) Pyrilla

Ans.147. (D) Coelomic fluid

Coelomic fluid will come out

Ans.148. (D) Larval forms

Larval forms of both are similar

Ans.149. (A) Sand fly, Tse tse fly, House fly, Culex

Sand fly, Tse tse fly, House fly, Culex are all vectors which transmit diseases.

Ans.150. (B) Oil of Chenopodium

Oil of Chenopodium is used to cure Ascariasis